DNA Genotek's Sample Collection Blog

Megan P. Hitchins, PhD.

Recent Posts

Epigenetic change and gene inactivation demonstrated in the saliva of a cancer patient carrying an “epimutation of MLH1”.

Posted by Megan P. Hitchins, PhD. on Wed, Jul 07, 2010 @ 16:07 PM

The Genetic Link welcomes guest blog authors. This guest submission is from Megan P. Hitchins, PhD. Medical Epigenetics Laboratory, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia. We thank Dr. Hitchins for her submission and welcome her as a guest author. I hope you enjoy this article.  

A host of familial cancer syndromes have been described in which several members of the same family develop cancer at a young age due to an inherited genetic susceptibility. It has been well established that germline mutations in the DNA sequence of genes that are protective against cancer, including tumour suppressor and DNA repair genes, are the culprit in most familial cases of cancer. Because they are inherited, these germline mutations are present in every cell of the body from conception into adulthood, knocking out one of the two copies of the protective gene. They confer a high risk of cancer development at a young age, although the cancer itself arises when the remaining normally-functioning copy of the gene is knocked out in susceptible tissues due to contributing environmental conditions, taking with it the last remnants of protection it once afforded against cancer. However, for a number of individuals with young-onset cancer, as well as entire families, the inherited defect remains unidentified, which complicates genetic counselling and clinical management of family members. Lynch syndrome is the most common of all family cancer syndromes, in which patients develop a range of cancers, the most frequent of which are colorectal and uterine cancers. Lynch syndrome is usually caused by germline mutations within one of the four genes that encode the mismatch repair system, most commonly MLH1 or MSH2. Loss of protection from the mismatch repair system results in the accumulation of mutations during cell division, and ultimately, cancer ensues. However, in about a third of Lynch syndrome patients, standard genetic screening fails to identify any pathogenic sequence change within the mismatch repair genes that might be responsible for their disease.

Read More

Tags: DNA collection, genetics, DNA saliva, Oragene, cancer genetics, cancer research, genotyping

Subscribe to our blog

Request free trial kits of any DNA Genotek product.

Request free trial kits

Disclaimers

This blog is intended to provide information to educate readers about molecular testing and genetic sample collection and DNA Genotek products.  Some of the information on this blog represents emerging scientific research or data developed for research purposes only. More information here.

Follow us

About DNA Genotek

Welcome to The Genetic Link, a blog providing new insights into DNA and RNA sample collection by DNA Genotek. DNA Genotek is a subsidiary of OraSure Technologies, Inc.

Most Popular Posts

Browse by Tag